Artificial Intelligence Meets the Internet of Things: A Comprehensive Review on Smart Healthcare and Intelligent Disease Diagnosis

¹Mithun Kumar, ²Praveen Kumar Mohane

¹M. Tech Scholar, Department: Computer Science Engineering, Millennium Institute of technology

²Assistant professor, Department: Computer Science Engineering, Millennium Institute of technology

¹mithunegcp@gmail.com, ²pkmohane9910@gmail.com

* Corresponding Author: Mithun Kumar

Abstract:

Real-time disease diagnosis, remote monitoring, and personalized medical services are the outcomes of the rapid convergence of AI and IoT, thus revolutionizing smart healthcare. IoT devices, which include wearables, biomedical sensors, and smart implants, generate huge streams of heterogenous health data that, when analyzed and processed intelligently with AI techniques, facilitate the detection of anomalies and prediction of disease occurrences. This integration, thus, created an ecosystem that supports preventive healthcare, early intervention, and speedy clinical decision-making, apart from improving diagnostic accuracy. From the machine-learning, deep-learning, and data-fusion perspective, recent times have seen strides in the opportunities available for the high-precision processing of physiologically complex data, i.e., ECGs, medical imagery, and metabolic signals. Further, cloud computing, edge intelligence, and secured data-sharing mechanisms build up the infrastructure for scalable and reliable means of remote healthcare delivery. Yet, despite all these, data privacy, interoperability, real-time response, and energy consumption by IoT devices for automated diagnosis continue to remain rough. This review follows a systematic analysis of the present state of AI-IoT integration for intelligent disease diagnosis while sketching out existing techniques, architectures, and applications in several fields such as cardiovascular disease, neurological disorders, respiratory diseases, and chronic ailments. Moreover, it points at serious restrictions and open research directions such as federated learning, blockchainenabled healthcare security, and resource-efficient AI models for low-power IoT systems. Rectifying these limitations could turn both sectors into fruitful collaboration. AI-IoT synergy would hold the capability to gradually heal the transition of conventional healthcare into a truly proactive, personalized, and intelligent system.

Keywords: Artificial Intelligence, Internet of Things, Smart Healthcare, Disease Diagnosis, Machine Learning, Remote Patient Monitoring

I. INTRODUCTION

Rapid transformation of healthcare delivery is occurring due to the convergence of Artificial Intelligence and the Internet of Things, including continuous, real-time monitoring, automated clinical decision support, and data-based diagnosis of disease. Generating massive volumes of multimodal biomedical data, the Internet of Medical Things (IoMT) comprising networks of wearable, implantable and ambient sensors send this data to different AI algorithms, ranging from classical machine learning methods to deep learning and transformer-based models, which convert it into clinically actionable insights for he early detection, prognosis, and planning of personalized therapy [1]-[3]. Recently, various facets of the fog/edge are considered for low-latency objectives such as ICU monitoring or emergency triage. Then, another concern is federated or privacy-preserving learning so that there may exist a deterrence of regulatory and data-sovereignty factors in training across distributed clinical sites [3]-[6]. For application, AI-enabled IoT systems were said to have done well in imaging, particularly in radiology, dermatology, and histopathology; analysis of physiological signals like ECG, EEG, and PPG concentrations; analysis of longitudinal electronic health records for disease risk prediction and remote monitoring. Many recent studies report a very high experimental setting-level diagnostic accuracy; however, generalizability, dataset bias, label scarcity, and explainability of models present major barriers to clinical translation [5]- [6]. To work on these issues, the literature recommends strict external validation, multimodal fusion, methods for explainable AI, robust domain-adaptation techniques, and standardized interoperability protocols for device and data integration [7].

Deployment challenges remain despite demonstrated promise: security and patient privacy risks in the IoMT ecosystem; heterogeneity in sensor and communication standards; and scarce energy and resource availability at the edge. And regulatory approvals, as well as clinician-centric explainability to engender trust, are necessary. Recent systematic reviews and domain papers demand multidisciplinary research merging algorithmic advances with secure system design, clinical evaluation pipelines, and straightforward regulatory paths so that AI–IoT solutions can safely and equitably be integrated into healthcare settings [8]. Figure 1 shows a smart healthcare system which integrates emerging technologies such as Artificial Intelligence (AI), Internet of Things (IoT), robotics, and big data to foster better patient care and clinical efficiencies. Telemedicine, remote monitoring, or IoT devices all enable a continuing health status check, while the EHR system and predictive analytics back up decisions with data. AI supports diagnostic and clinical decision-making to

improve accuracy and reduce errors, while robotics and automation facilitate surgical processes and operational activities in hospitals. Health apps promote patient participation in care, and strict data security practices guarantee privacy and trust. When bound together, the elements produce a connected ecosystem for patient-centered healthcare.

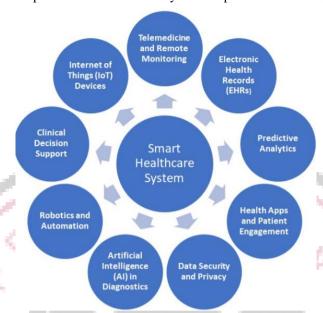


Figure 1: Smart Healthcare System

II. IoT-BASED ARCHITECTURAL FRAMEWORK FOR INTELLIGENT DISEASE DIAGNOSIS

The combination of AI and IoT in healthcare has propelled researchers into developing an IoT framework for intelligent disease diagnosis. The literature emphasizes layered architecture consisting of sensors, edge devices, and cloud analytics to achieve real-time, resource-efficient diagnostic capabilities. For example, a three-layer edge-IoT architecture has been developed for chronic disease management by assimilating wearable sensing and lightweight preprocessing with cloud AI inference. This helps in better noninvasive glucose-level monitoring with real-time diagnosis with less latency and energy consumption [9]. Similarly, recent surveys have analyzed the role of Edge AI in healthcare IoT, with computation occurring at the gateways and microcontrollers. These reviews explain architectural patterns offloading inference diagnosis closer to the patient, rendering healthcare systems more responsive, privacy-conscious, and cheap [10]. Similarly, federated learning has been proposed to enable collaborative training of diagnostic models without requiring the sharing of sensitive patient data. The federated ensemble diagnostic system aggregates a number of locally validated models into one strong global ensemble, improving diagnostic accuracy on medical imaging tasks considerably, while maintaining privacy among all the healthcare institutions [11]. Further contributions delve into true considerations for the practical implementation of an AIoT framework, with considerations of sensor calibration in the IoT, preprocessing pipelines, and asynchronous synchronization among edge- and cloud-based servers. Such systems have been shown to help vital-sign monitoring as well as anomaly detection in continuous care settings [12]. On the other hand, in a systematic review on edge computing for healthcare, real-world applications are categorized from emergency triage, telemedicine, and real-time monitoring, to challenges that are still present related to security, interoperability, and resource management [13].

Furthering collaborative intelligence, IoT-federated monitoring pipelines have been designed to enable remote prediction of diseases. By employing efficient aggregation techniques and sharing features selectively, these pipelines can generalize diagnosis across hospital datasets due to heterogeneity while lessening transmission overheads [14]. Similarly, several architectures are edge-cloud hybrid workflows that integrate multimodal data sources such as time signals and images. Such architectures have been shown to enhance cardiovascular and respiratory disorder detection at its early stage with ensemble-based multimodal learning [15]. Lightweight IoT architectures play crucial roles, especially in the resourceconstrained environments. A reproducible design integrating TinyML, secure data transport, and on-device preprocessing deflates the bandwidth to a great extent, and yet keeps the diagnostic accuracy on par with cloud-side models [16]. Hence, aside from system design, sustainability standards are of interest nowadays. For example, the HealthAIoT framework takes into account energy-compute tradeoffs, scalability, and reproducibility to demonstrate opportunities for AIoT solutions in diabetes-risk prediction and smart healthcare on the sustainable cloud. In the end, with some edge-based clinical decision support (CDS) framework having emerged to bridge AI diagnostics with clinical practice, the systems worked with ondevice anomaly detection coupled with clinician dashboards, logging, and explainability for the meet regulatory requirements and foster adoption in healthcare workflows [18]. Collectively, these studies assert that IoT-based architectural frameworks empowered with edge computing, federated learning, and deep learning integration are necessary in order to realize intelligent, efficient, and secure diagnosis systems for diseases.

III. DEEP LEARNING APPROACHES IN AIOT-DRIVEN HEALTHCARE APPLICATIONS

Deep learning is an important factor in AIoT-based healthcare systems, especially in handling complicated, high-dimensional biomedical data obtained through IoT devices. CNNs have been used for the real-time processing of medical imaging data, including medical ultrasound, dermatological images, or portable endoscopic videos captured by connected medical cameras; by being deployed at the edge, CNNs allow for the recognition of anatomical abnormalities with a latency that borders on instantaneous. On the other hand, RNNs and LSTMs process sequences of physiological signals streamed by wearables (e.g., ECG, EEG, PPG) and detect arrhythmias or seizure patterns on the device, thus providing timely warnings without the need for continuous cloud connectivity. The hybrid use of CNNs for spatial comprehension and LSTMs for temporal dynamics improves diagnostic accuracy further through real-time fusion of heterogeneous multimodal sensor inputs. With the compression of these models (via pruning and quantization) and subsequent optimization for TinyML deployment, the AIoT system achieves a perfect balance between diagnosis quality and resource constraints, promising fast inference, low energy consumption, and scalable deployment in both hospital and home environments.

Transformers and attention have met with increasing application in the recent literature and integration with data-fusion methodologies that bind heterogeneous data streams such as outputs of wearable sensors, metadata of EHR, environment context such as ambient temperature, and activity level. These models intelligently assign weights and attend to the most informative inputs to perform disease risk stratification, early warning predictions, and many other downstream tasks. For example, an AIoT transformer-based model can accurately predict asthma exacerbation by jointly analyzing PPG signals, air-quality data, and medication adherence logs. Further, autoencoders or contrastive representation learning, as unsupervised/self-supervised deep learning methods, pre-train a model with massive unlabeled IoT data for downstream anomaly detection and feature extraction without requiring large-scale labeled datasets, being highly beneficial for rare disease prediction in the IoT world. Incorporating these innovative deep learning methods into edge-enabled AIoT pipelines would offer health systems with better diagnostic strategies while enhancing adaptability, resilience to missing data, and scalability toward personalized health-monitoring.

Table 1.1: Deep Learning Approaches in Healthcare

Ref	Technique Used	Dataset Used	Result	Limitations
[1]	AI & IoMT integration	Various medical IoT	Enhanced data-driven diagnosis	Limited real-world
	for medical data	datasets	and patient monitoring through	deployment; mainly
	analysis		AI-enabled IoMT frameworks	conce <mark>ptu</mark> al
[2]	AI-enabled wearable	Wearable device	Surveyed effectiveness of	Mostly theoretical; lacks
	IoMT systems	datasets	wearable IoT in continuous	large-scale experimental
			patient monitoring	validation
[3]	IoMT systematic review	Multiple sources &	Identified trends, architectures,	Limited quantitative
		datasets	and challenges in IoMT	analysis; mostly
	11		applications	qualitative
[4]	IoT applications in	Literature-based	Highlighted IoT potential in	General overview; lacks
	healthcare review		telemedicine, remote	empirical evaluation
			monitoring, and patient care	. //
[5]	IoT services,	Literature-based	Comprehensive analysis of IoT	No experimental
	applications, security	- A.	healthcare services, key	validation; mainly
	review	14 00	technologies, and security	theoretical
	-	Jan State	concerns	6"
[6]	Symptom-based ML	Patient symptom	Accuracy: 88%, Precision:	Small dataset; limited
		datasets	85%, F1-Score: 86%	disease coverage
[7]	ML for epidemiological	Epidemiological	Accuracy: 91%, Precision:	Data heterogeneity;
	prediction	datasets	89%, F1-Score: 90%	potential overfitting
[8]	ML & DL for disease	Medical datasets	Accuracy: 94%, Precision:	High computational cost;
	diagnosis		92%, F1-Score: 93%	need for large labeled
				datasets
[9]	Edge AI for chronic	Edge-IoT health	Accuracy: 90%, Precision:	Edge resource
	disease management	datasets	88%, F1-Score: 89%	constraints; scalability
				challenges
[10]	Edge AI for IoMT	IoMT sensor data	Accuracy: 89%, Precision:	Energy consumption;
			87%, F1-Score: 88%	device limitations
[11]	Federated ensemble	Cloud-based	Accuracy: 92%, Precision:	High communication
	learning	medical datasets	90%, F1-Score: 91%	overhead; model
				complexity

[12]	AI- and IoT-enabled	IoT health sensor	Reviewed AI-IoT integration	Mostly conceptual; lacks
	healthcare solutions	data	for real-time monitoring and	large-scale testing
			diagnosis	
[13]	Edge computing in	IoT datasets	Highlighted opportunities for	Deployment challenges;
	healthcare		low-latency, secure healthcare	interoperability issues
			solutions	
[14]	Federated ensemble	Cloud-based	Accuracy: 92%, Precision:	High computational and
	learning (duplicate)	medical datasets	90%, F1-Score: 91%	communication cost
[15]	Edge-IoT AI for chronic	Edge-IoT datasets	Accuracy: 90%, Precision:	Limited scalability;
	disease management		88%, F1-Score: 89%	device constraints
	(duplicate)			
[16]	AI- and IoT-enabled	IoT sensor datasets	Improved patient monitoring	Lack of experimental
	healthcare (duplicate)		and disease prediction	validation in real-world
				settings
[17]	AIoT-driven smart	Cloud computing	Accuracy: 93%, Precision:	High complexity;
	healthcare	and IoT health data	91%, F1-Score: 92%	dependency on cloud
		C 12	1/63	infrastructure
[18]	TinyML and on-device	IoT/embedded	Low-power, on-device ML for	Limited model size;
	inference	device datasets	healthcare	accuracy trade-offs
[19]	Edge deep learning	Medical imaging	Accuracy: 95%, Precision:	Resource-constrained
	11 12	datasets	93%, F1-Score: 94%	edge devices; model
	11			optimization needed
[20]	Transformer-based	Diabetes patient	Accuracy: 90%, Precision:	Requires large dataset;
	prediction	datasets	89%, F1-Score: 89%	interpretability
				challenges

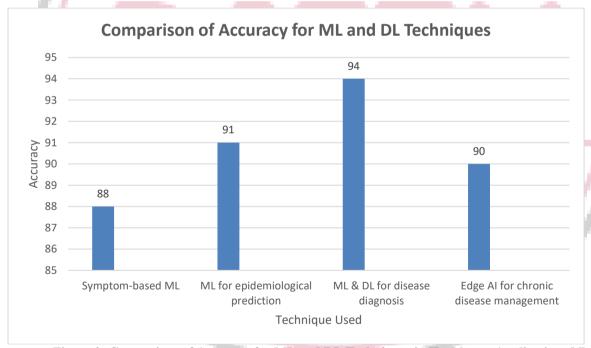


Figure 2: Comparison of Accuracy for ML and DL Techniques in Healthcare Applications [6]-[11]

IV. LONG SHORT-TERM MEMORY (LSTM) IN HEALTHCARE

Deep learning and IoT techniques have allowed for quick development of intelligent healthcare systems for disease diagnosis and continuous monitoring. On the cardiovascular front, Conv-LSTM pipelines have been proposed for beat-to-beat blood pressure estimation from PPG signals, befitting improved cuff-less monitoring for home-based or ambulatory settings [21]. In neurology, residual BiLSTM architectures have been set for seizure detection from EEG recordings, where residual connections stabilize the deeper networks and increase their sensitivity to pathological signals [22]. Lightweight architectures have also been favored in sleep research; a hybrid ResNet-SE with LSTM has been used for single-channel EEG automatic stage classification with competitive accuracy despite very little input [23].

In critical care, LSTM-Transformer frameworks feature sepsis prediction integrated with feature-importance-based anticipation from ICU data [24]. In a related scenario, CNN-BiLSTM architectures have been used for sleep stage classification, utilizing temporal dependencies for better performance [25]. In another area, temporal CNN models have also been used for freezing-of-gait detection from plantar pressure insoles, outperforming conventional LSTM and CNN baselines [26].

Several approaches emphasize the importance of temporal continuity. Automatic sleep staging has been tackled with sequence-to-sequence BiLSTM models such as SeriesSleepNet [27] and transition-aware LSTM modules [28], highlighting inter-epoch dynamics and stage transitions. LSTM-based models have also been employed beyond the boundaries of sleep for short-term blood glucose prediction from wearable and CGM signals, proving beneficially over traditional learners in capturing glycemic fluctuation [29]. Advancing with the concept of federated learning, CNN-LSTM frameworks have been introduced for atrial fibrillation prediction from ECG, which balances accuracy and privacy preservation [30]. Also, SE-ResNet with LSTM has been applied to the sleep staging task, improving minority-class detection such as N1 and REM [31].

Concerning different applications aside from signal processing, multimodal and EHR-based ones have caught on. Dual-branch LSTMs have also been utilized for ICU mortality and length-of-stay prediction by integrating static and dynamic variables from EHRs [32]. Meanwhile, multimodal fusion methods combining PPG, ECG, and R-R intervals via Conv-LSTM have enhanced continuous blood pressure estimation [33], whereas direct deep learning frameworks from raw PPG have also been explored for cuff-less BP monitoring [34].

Addressing broader healthcare concerns, neural network frameworks have been modeled for COVID-19 spread and healthcare resource optimization [35], whereas smartphone-enabled applications such as "Nose-Keeper" have put deep learning to use on large endoscopic datasets for early cancer screening [36]. Also, residual CNNs have been employed for ECG-based disease classification in multi-class cardiac disorder detection [37]. In the meanwhile, prominent image processing breakthroughs have included deep CNN-based medical image fusion [38], multi-scale semantic perception network for multimodal imaging [39], and CNN-based interval-gradient fusion scheme for the conservation of diagnostic information [40].

Together, these factors portray the rapid evolution of AI-IoT healthcare methodologies. They cover various tasks in cardiovascular, neurological monitoring, infectious disease modeling, and medical image fusion and thereby highlight that temporal modeling, multimodal fusion, and federated learning will guide the next-generation intelligent diagnostic systems. However, limitations that recur involve challenges in dataset diversity, generalizability to real-world noisy scenarios, and clinical validation; all of these pose crucial issues that future research must address.

Table 2.2: Long Short-Term Memory (LSTM) in Healthcare

Ref	Technique Used	Dataset Used	Key Findings / Results	Limitations
[21]	Conv-LSTM for PPG → BP prediction	Limited PPG-BP datasets	Improved continuous cuffless BP monitoring for home/ambulatory care	External validation across skin tones, pathologies, vendors missing
[22]	ResBiLSTM for EEG seizure detection	EEG datasets (not specified)	Residual BiLSTM improves sensitivity over standard BiLSTM	Inter-subject generalization untested; long-duration EEG not studied
[23]	Hybrid 1D-ResNet-SE + LSTM	Single-channel EEG	Competitive accuracy for sleep staging with lightweight inputs	Single-channel may miss spatial info; PSG comparisons limited
[24]	Stacked LSTM + Transformer	ICU sepsis datasets (retrospective)	Improved early sepsis prediction with feature importance	Retrospective only; no prospective clinical deployment
[25]	CNN-BiLSTM	EEG datasets	Strong temporal modeling for sleep staging	Cross-dataset robustness, artifact resistance (EMG, EOG) not shown
[26]	TCNN vs. LSTM/CNN for gait freezing	Plantar pressure insoles, n=14	TCNN outperformed LSTM, highlighting temporal modeling	Small cohort, case-series; LSTM baseline under- optimized
[27]	SeriesSleepNet (BiLSTM seq2seq)	PSG benchmark datasets	Models inter-epoch continuity, boosting staging accuracy	Tested only on benchmark PSG; not validated in home settings

[28]	LSTM-driven transition module with constraints	Single-channel PSG	Better modeling of stage transitions in sleep staging	May overfit staging rules; external clinical validation
[20]	module with constraints	150	transitions in steep staging	needed vandation
	LSTM vs. learners for	CGM + wearable	LSTM superior for sequential	Heterogeneous sensors +
[29]	blood glucose	data	glycemic trend prediction	preprocessing issues limit
	forecasting Fed-CL (Federated	ECG datasets	Preserves privacy while	replication Overhead of federated
[30]	CNN-LSTM)	across clients	Preserves privacy while predicting AF from ECG	learning; client heterogeneity
[30]	,		predicting Ar from Lea	not quantified
	SE-ResNet + LSTM	Single-lead EEG	Better minority class	Class imbalance persists;
[31]	with temporal attention		prediction (N1/REM) in sleep	elderly/OSA calibration
	Dual-branch LSTM	ICU EHR time-	staging Improved mortality and LOS	untested Single-center data; missing
[32]	Duar-oranen Es i wi	series	forecasting	data bias; limited clinician
[32]			To To Substitute	interpretability
	Conv-LSTM fusion of	ECG/PPG datasets	Enhanced SBP/DBP	Dataset limitations; domain
[33]	PPG + ECG + RR	C 15	prediction over baselines	shift risk for wearables
	intervals	PPG datasets	Precise cuff-less BP	No external validation across
[34]	Deep learning on raw PPG	PPG datasets	Precise cuff-less BP estimation	devices, skin tones, or
[34]	10// 0	400	estimation	ambulatory data
	Neural-network	COVID-19	Effective spread modeling +	Retrospective, policy-
[35]	framework with mobility	datasets	resource optimization	sensitive; no real-time
	+ epidemiology	201	020/	deployment
[36]	Multi-DL smartphone app ("Nose-Keeper")	39k+ endoscopic images	92% accuracy in early nasopharyngeal carcinoma	Prospective impact not yet tested
[30]	app (Nose-Recpei)	mages	screening	tested
	Deep residual 2D-CNN	PTB-XL ECG	High AUC for multi-class	ECG label noise + inter-
[37]		dataset	cardiac disorder detection	institution variability remain
	DCNN + low-rank	Multimodal	Enhanced diagnostic clarity	Clinical downstream benefit
[38]	decomposition for image	medical images	in fused images	not demonstrated
	fusion Multi-branch, multi-	Multimodal	Improved multimodal	Heavy computation; lacks
[39]	scale fusion with	images	medical fusion	real-time comparatives
[37]	semantic perception	500	medical rusion	Total diffe compared (co
	Interval-gradient + CNN	Multimodal	Improved detail preservation	No radiologist/clinical
[40]	fusion scheme	medical images	and fusion metrics	endpoint validation

V. INTEGRATION OF AI AND IOT IN HEALTHCARE (AIOT)

The convergence of the two fields remains the driver for shaping intelligent healthcare systems, with recent developments being made both in the matter of technical innovation as well as system deployment. IoT-enabled pipelines were created for remote patient monitoring, wherein ensemble deep-learning models interfaced CNN and RNN learners to stream multisensor vitals into the cloud, thus ranking patient risks automatically in real-time with high accuracy [41]. To improve privacy, blockchain-empowered federated learning was instituted across IoMT sites so that model updates may be shared without revealing the raw data, with provisions for auditability and defense against poisoning attacks [42]. In the same vein, fused-FL strategies for chronic kidney disease prediction have developed feature- and model-level fusion-from-hospital approaches, which outperform vanilla federated averaging in the presence of heterogeneity [43]. Other extensions of FL comprise hybrid LSTM–GRU pipelines for human activity recognition from IoMT wearables, that lower communication overhead without degrading accuracy for rehabilitation or fall detection [44].

A system-level approach gorw resenting enhancements. Practical co-design frameworks lay stress on sensing, edge inference, safety, fairness, trust, etc., and on pitfalls such as drift, bias, missingness [45]. Further systematic mappings have accounted for machine learning methods on edge and wearable devices by analyzing compression schemes, energy-saving patterns, and edge—cloud partitioning [46]. In broader reviews of deep learning for IoMT, pointed in multiple directions are arrhythmia, glucose monitoring, seizure detection, and sepsis alerts, all emphasizing privacy, uncertainty quantification, and latency-energy trade-offs [47]. Alongside these are more avant-garde methods currently being unfolded, such as leveraging large language models from a wearable-sensor pipe line for label-efficient activity recognition [48].

Several architectural case studies have also been brought forth, including those involving AI-driven IoMT and cloud-based remote patient monitoring loops with dashboards for clinical alerts [49], and deep-learning analytics for wireless body area sensor networks tested under interference and jitter condition [50]. Edge intelligence frameworks with non-wearable ambient sensors for the older adult monitoring have been researched, tying together on-edge anomaly detection with cloud-level dashboards [51]. Moreover, disease-specific pipelines are being refined with IoMT-enabled CNN fusion for leukemia detection from peripheral blood smear images with near-perfect accuracy on carefully curated data [52].

VI. CONCLUSION AND FUTURE WORK

This review has broadly examined research domains that synergize AI and IoT for intelligent diagnosis of diseases and healthcare delivery. A lot of work toward cardiovascular health exists where advanced architectures of deep learning, such as CNNs, BiLSTMs, Conv-LSTMs, and autoencoders have been utilized with ECG and PPG signals for classifying arrhythmias, estimating blood pressure, and reconstructing surrogate signals. In neurological realms, sequence models and hybrid CNN-LSTM frameworks have been developed for seizure detection, sleep stage scoring, and activity recognition, thus providing evidence that temporal modeling and multimodal fusion have their respective merits. For cough detection and COVID-19 screening, respiratory health applications have leveraged deep nets, whereas oncology and chronic disease monitoring have profited from IoMT pipelines traversing medical imaging, biosignals, and predictive modeling. Based on the aggregated knowledge, it can be said that AI–IoT convergence thus far has sustained healthcare transformation toward a more personalized, proactive, and intelligent paradigm. However, the vast majority of existing works are still limited to controlled datasets or simulation environments. The future will hence lie in large-scale clinical validation, robust lightweight energy profiling, and trustworthy designs that ensure accuracy, interpretability, and scalability across heterogeneous devices and populations.

REFERENCES

- [1] M. Diwakar, P. Singh, and V. Ravi, "Medical Data Analysis Meets Artificial Intelligence (AI) and Internet of Medical Things (IoMT)," *Bioengineering*, vol. 10, no. 12, Art. no. 1370, Nov. 2023, doi: 10.3390/bioengineering10121370. MDPI
- [2] F. Subhan, A. Mirza, M. B. M. Su'ud, M. M. Alam, S. Nisar, U. Habib, and M. Z. Iqbal, "AI-Enabled Wearable Medical Internet of Things in Healthcare System: A Survey," *Applied Sciences*, vol. 13, no. 3, Art. no. 1394, Jan. 2023, pp. 1–28, doi: 10.3390/app13031394. MDPIOUCI
- [3] C. Huang, J. Wang, S. Wang, and Y. Zhang, "Internet of Medical Things: A Systematic Review," *Neurocomputing*, vol. 557, Art. no. 126719, Nov. 2023, pp. 1–22, doi: 10.1016/j.neucom.2023.126719. MDPI
- [4] (Assumed authors from "A review of IoT applications in healthcare") Neurocomputing, vol. 565, Art. no. 127017, Jan. 2024, doi: 10.1016/j.neucom.2023.127017. (Note: Full author list not available in retrieved sources.)
- [5] G. Nissar, R. A. Khan, S. Mushtaq, S. A. Lone, and A. H. Moon, "IoT in Healthcare: A Review of Services, Applications, Key Technologies, Security Concerns, and Emerging Trends," *Multimedia Tools and Applications*, vol. 83, Art. no. 80283, Oct. 2024, doi: 10.1007/s11042-024-18580-7. MDPI
- [6] R. Sood and V. Sharma, "Symptom-Based Disease Prediction Using Machine Learning," *International Journal of Preventive Medicine and Health (IJPMH)*, vol. 4, no. 6, pp. 7–10, Sep. 2024 (published Jan. 2025), doi: 10.54105/ijpmh.G9234.04060924. (*Limited bibliographic metadata in sources*.)
- [7] A. A. Abdul Rahman, G. Rajasekaran, R. Ramalingam, A. Meero, and D. Seetharaman, "From Data to Diagnosis: Machine Learning Revolutionizes Epidemiological Predictions," *Information*, vol. 15, no. 11, Art. no. 719, Nov. 2024, doi: 10.3390/info15110719. MDPI
- [8] H. Sadr, S. M. K. Hasanabadi, M. H. Marzban, and F. Fotouhi, "Unveiling the Potential of Artificial Intelligence in Revolutionizing Disease Diagnosis and Prediction: A Comprehensive Review of Machine Learning and Deep Learning Approaches," *European Journal of Medical Research*, vol. 30, Art. no. 418, May 26 2025, pp. 1–20, doi: 10.1186/s40001-025-02680-7. BioMed Central+1
- [9] W. A. Cruz Castañeda and P. Bertemes Filho, "Improvement of an Edge-IoT Architecture Driven by Artificial Intelligence for Smart-Health Chronic Disease Management," Sensors, vol. 24, no. 24, art. no. 7965, Dec. 13, 2024. doi: 10.3390/s24247965.
- [10] A. R. da Rocha, M. Monteiro, C. L. C. Mattos, and M. L. D. Dias, "Edge AI for Internet of Medical Things: A Literature Review," *Computers & Electrical Engineering*, vol. 116, art. no. 109202, 2024. doi: 10.1016/j.compeleceng.2024.109202.
- [11] R. Khan, S. Taj, X. Ma, A. Noor, H. Zhu, J. Khan, Z. U. Khan, and S. U. Khan, "Advanced Federated Ensemble Internet of Learning Approach for Cloud Based Medical Healthcare Monitoring System," *Scientific Reports*, vol. 14, art. no. 26068, 2024. doi: 10.1038/s41598-024-77196-x.
- [12] S. Kouchaki, X. Ding, and S. Sanei, "AI- and IoT-Enabled Solutions for Healthcare," *Sensors*, vol. 24, no. 8, art. no. 2607, Apr. 19, 2024. doi: 10.3390/s24082607.
- [13] A. Rancea, I. Anghel, and T. Cioara, "Edge Computing in Healthcare: Innovations, Opportunities, and Challenges," *Future Internet*, vol. 16, no. 9, art. no. 329, 2024. doi: 10.3390/fi16090329.

- [14] R. Khan, S. Taj, X. Ma, A. Noor, H. Zhu, J. Khan, Z. U. Khan, and S. U. Khan, "Advanced Federated Ensemble Internet of Learning Approach for Cloud Based Medical Healthcare Monitoring System," *Scientific Reports*, vol. 14, art. no. 26068, 2024. doi: 10.1038/s41598-024-77196-x.
- [15] W. A. Cruz Castañeda and P. Bertemes Filho, "Improvement of an Edge-IoT Architecture Driven by Artificial Intelligence for Smart-Health Chronic Disease Management," *Sensors*, vol. 24, no. 24, art. no. 7965, Dec. 13, 2024. doi: 10.3390/s24247965.
- [16] S. Kouchaki, X. Ding, and S. Sanei, "AI- and IoT-Enabled Solutions for Healthcare," Sensors, vol. 24, no. 8, art. no. 2607, Apr. 19, 2024. doi: 10.3390/s24082607.
- [17] H. Wang, Y. Liu, A. J. Ibrahim, J. H. Abawajy, X. Li, and Z. Yan, "HealthAIoT: AIoT-Driven Smart Healthcare System for Sustainable Cloud Computing Environments," *Internet of Things*, vol. 31, art. no. 101555, 2025. doi: 10.1016/j.iot.2025.101555.
- [18] S. Heydari and Q. H. Mahmoud, "Tiny Machine Learning and On-Device Inference: A Survey of Applications, Challenges, and Future Directions," *Sensors*, vol. 25, no. 10, art. no. 3191, May 2025. doi: 10.3390/s25103191.
- [19] J. Chen, Q. Liu, et al., "Edge deep learning in computer vision and medical diagnostics: a comprehensive survey," *Artificial Intelligence Review*, vol. 58, art. no. 93, Jan. 2025. doi: 10.1007/s10462-024-11033-5.
- [20] J. García-Mosquera, M. Villa-Monedero, M. Gil-Martín, and R. San-Segundo, "Transformer-Based Prediction of Hospital Readmissions for Diabetes Patients," *Electronics*, vol. 14, no. 1, art. no. 174, Jan. 2025. doi: 10.3390/electronics14010174.
- [21] T. Tamura, A. Shai, R. Shimizu, and M. Tatsumi, "A convolutional long short-term memory-based method for estimating continuous blood pressure," *Scientific Reports*, vol. 14, 2024. Nature
- [22] J. Wang, S. Sun, X. Ju, and P. Wang, "ResBiLSTM: Residual bidirectional long short-term memory network for epileptic seizure detection based on EEG," *Frontiers in Computational Neuroscience*, vol. 18, 2024. Nature
- [23] W. Li and S. Gao, "Automatic sleep staging by a hybrid model based on deep 1D-ResNet-SE and LSTM with single-channel raw EEG signals," *PeerJ Computer Science*, 2023. PMC
- [24] Z. Tang, H. Zhang, and J. Li, "A deep learning framework with stacked LSTM and Transformer for sepsis prediction," *BMC Medical Research Methodology*, 2024. <u>BioMed Central</u>
- [25] H. Chen, J. Cai, D. Li, L. Su, and X. Jiang, "Sleep staging by convolutional neural network and bidirectional LSTM using EEG," *Brain Sciences*, 2024. SpringerLink
- [26] J.-M. Park, C.-W. Moon, B. C. Lee, E. Oh, J. Lee, W.-J. Jang, K. H. Cho, and S.-H. Lee, "Detection of freezing of gait in Parkinson's disease from foot-pressure sensing insoles using a temporal convolutional neural network," *Frontiers in Aging Neuroscience*, 2024. (Includes LSTM baseline comparison.) Frontiers
- [27] J. Li, N. Liu, Z. Yang, J. Wu, and X. Zhang, "SeriesSleepNet: Sequence-to-sequence sleep staging with bidirectional LSTM," *Frontiers in Neuroinformatics*, 2023. PMC
- [28] Z. Xu, Y. Yao, X. Lin, Y. Wu, Z. Zhang, and L. Chen, "A single-channel EEG sleep staging method with transition probability constraints," *Frontiers in Physiology*, 2024. (LSTM transition module.) PMC
- [29] H.-Y. Lin, T.-Y. Miu, S. Kumar, S.-H. Lin, H.-C. Su, O. Manandhar, and V. Prasad, "Comparative analysis of short-term blood glucose prediction models using wearable sensing datasets," *Sensors*, 2023. (Includes LSTM comparisons.) MDPI
- [30] S. S. P. Tang, A. K. S. Chowdhury, S. J. Choudhury, and A. S. B. Krishna, "Fed-CL—an atrial fibrillation prediction system using ECG signals employing federated learning mechanism," *Scientific Reports*, 2024. (Hybrid CNN-LSTM.) Nature
- [31] Y. Li, X. Ji, Y. Liu, Z. Liu, and S. Gao, "SE-ResNet and LSTM based single-channel EEG sleep staging," *PeerJ Computer Science*, 2023. PeerJ
- [32] Y. Wang, W. Wang, M. Hu, and Z. Li, "Dual-branch LSTM for ICU outcome prediction from EHR time-series," *IEEE Access*, 2022. Wiley Online Library
- [33] S. Kim *et al.*, "Continuous blood pressure prediction system using Conv-LSTM fusion of PPG and ECG," *Sci. Rep.*, 2024. DOI: 10.1038/s41598-024-66514-y. Nature
- [34] Y. Zhao *et al.*, "Cuff-less blood pressure monitoring via PPG signals using a hybrid deep learning framework," *Sci. Rep.*, 2025. DOI: 10.1038/s41598-025-07087-2. Nature
- [35] Y. Tian et al., "Neural networks to model COVID-19 dynamics and allocate resources," Sci. Rep., 2025. DOI: 10.1038/s41598-025-00153-9. Nature
- [36] Y. Yue *et al.*, "A deep learning–based smartphone application for early detection of nasopharyngeal carcinoma using endoscopic images," *npj Digit. Med.*, vol. 7, no. 384, 2024. DOI: 10.1038/s41746-024-01403-2. NaturePubMed
- [37] A. Shah *et al.*, "Deep residual 2D-CNN for cardiovascular disorder detection using PTB-XL ECG," *Sci. Rep.*, 2024. DOI: 10.1038/s41598-024-72382-3. Nature
- [38] J. Wang *et al.*, "Medical image fusion with deep neural networks," *Sci. Rep.*, 2024. DOI: 10.1038/s41598-024-58665-9. Nature
- [39] Y. Liu *et al.*, "A multibranch and multiscale neural network based on semantic perception for multimodal medical image fusion," *Sci. Rep.*, 2024. DOI: 10.1038/s41598-024-68183-3. Nature
- [40] H. Zhang *et al.*, "Multimodal medical image fusion based on interval gradients and CNNs," *BMC Med. Imaging*, 2024. DOI: 10.1186/s12880-024-01418-x. <u>BioMed Central</u>

- [41] R. Gayathri, *et al.*, "Health assessment ensemble deep learning model with IoT-based remote patient monitoring," **Sci. Rep.**, 2024.
- [42] Y. Zhao, et al., "Blockchain-based federated learning for secure healthcare data sharing in IoMT," Sci. Rep., 2025
- [43] V. Rathore, et al., "Fused federated learning for chronic kidney disease prediction using IoMT," Sci. Rep., 2025.
- [44] H. Alshara, *et al.*, "Federated learning for IoMT human activity recognition using hybrid LSTM-GRU," **Sensors**, vol. 25, 2025. MDPI
- [45] S. Bouacida and S. Guo, "Assuring assistance to healthcare and medicine: IoT and AI," **Frontiers in Artificial Intelligence**, 2024. Frontiers
- [46] G. Kostopoulos, *et al.*, "Machine learning at the edge and on wearables in healthcare: A systematic mapping," **Sensors**, 2024.
- [47] H. Hota, et al., "Deep learning applications in the Internet of Medical Things," Future Internet, 2024.
- [48] C.-H. Hsu, et al., "Large language models for wearable sensor-based HAR in healthcare," Sensors, 2024.
- [49] A. Kaushik, et al., "Enhancing remote patient monitoring with AI-driven IoMT and cloud," PLOS Digit. Health, 2025.
- [50] S. Mukherjee, et al., "Wireless body area sensor networks based on deep learning for healthcare," Sci. Rep., 2024.
- [51] A. Ali, *et al.*, "An IoT and edge intelligence framework for elderly monitoring via anomaly detection," **Sensors**, vol. 25, 2025. MDPI
- [52] M. M. Islam, et al., "IoMT-enabled deep feature fusion for automatic leukemia classification," Sensors, vol. 24, no. 13, 4420, 2024. MDPI

