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Abstract:

Real-time disease diagnosis, remote monitoring, and personalized medical services are the outcomes of the rapid
convergence of Al and 10T, thus revolutionizing smart healthcare. 10T devices, which include wearables, biomedical
sensors, and smart implants, generate huge streams of heterogenous health data that, when analyzed and processed
intelligently with Al techniques, facilitate the detection of anomalies and prediction of disease occurrences. This
integration, thus, created an ecosystem that supports preventive healthcare, early intervention, and speedy clinical
decision-making, apart from improving diagnostic accuracy. From the machine-learning, deep-learning, and data-fusion
perspective, recent times have seen strides in the opportunities available for the high-precision processing of
physiologically complex data, i.e., ECGs, medical imagery, and metabolic signals. Further, cloud computing, edge
intelligence, and secured data-sharing mechanisms build up the infrastructure for scalable and reliable means of remote
healthcare delivery. Yet, despite all these, data privacy, interoperability, real-time response, and energy consumption by
loT devices for automated diagnosis continue to remain rough. This review follows a systematic analysis of the present
state of Al-loT integration for intelligent disease diagnosis while sketching out existing techniques, architectures, and
applications in several fields such as cardiovascular disease, neurological disorders, respiratory diseases, and chronic
ailments. Moreover, it points at serious restrictions and open research directions such as federated learning, blockchain-
enabled healthcare security, and resource-efficient Al models for low-power l0T systems. Rectifying these limitations could
turn both sectors into fruitful collaboration. Al-1oT synergy would hold the capability to gradually heal the transition of
conventional healthcare into a truly proactive, personalized, and intelligent system.
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1. INTRODUCTION

Rapid transformation of healthcare delivery is occurring due to the convergence of Artificial Intelligence and the Internet
of Things, including continuous, real-time monitoring, automated clinical decision support, and data-based diagnosis of
disease. Generating massive volumes of multimodal biomedical data, the Internet of Medical Things (IloMT) comprising
networks of wearable, implantable and ambient sensors send this data to different Al algorithms, ranging from classical
machine learning methods to deep learning and transformer-based models, which convert it into clinically actionable
insights for he early detection, prognosis, and planning of personalized therapy [1]-[3]. Recently, various facets of the
fog/edge are considered for low-latency objectives such as ICU monitoring or emergency triage. Then, another concern is
federated or privacy-preserving learning so that there may exist a deterrence of regulatory and data-sovereignty factors in
training across distributed clinical sites [3]-[6]. For application, Al-enabled 10T systems were said to have done well in
imaging, particularly in radiology, dermatology, and histopathology; analysis of physiological signals like ECG, EEG, and
PPG concentrations; analysis of longitudinal electronic health records for disease risk prediction and remote monitoring.
Many recent studies report a very high experimental setting-level diagnostic accuracy; however, generalizability, dataset
bias, label scarcity, and explainability of models present major barriers to clinical translation [5]- [6]. To work on these
issues, the literature recommends strict external validation, multimodal fusion, methods for explainable Al, robust domain-
adaptation techniques, and standardized interoperability protocols for device and data integration [7].

Deployment challenges remain despite demonstrated promise: security and patient privacy risks in the loMT ecosystem;
heterogeneity in sensor and communication standards; and scarce energy and resource availability at the edge. And
regulatory approvals, as well as clinician-centric explainability to engender trust, are necessary. Recent systematic reviews
and domain papers demand multidisciplinary research merging algorithmic advances with secure system design, clinical
evaluation pipelines, and straightforward regulatory paths so that Al-10T solutions can safely and equitably be integrated
into healthcare settings [8]. Figure 1 shows a smart healthcare system which integrates emerging technologies such as
Artificial Intelligence (Al), Internet of Things (loT), robotics, and big data to foster better patient care and clinical
efficiencies. Telemedicine, remote monitoring, or 10T devices all enable a continuing health status check, while the EHR
system and predictive analytics back up decisions with data. Al supports diagnostic and clinical decision-making to
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improve accuracy and reduce errors, while robotics and automation facilitate surgical processes and operational activities
in hospitals. Health apps promote patient participation in care, and strict data security practices guarantee privacy and trust.
When bound together, the elements produce a connected ecosystem for patient-centered healthcare.
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Figure 1: Smart Healthcare System
1. 10T-BASED ARCHITECTURAL FRAMEWORK FOR INTELLIGENT DISEASE DIAGNOSIS

The combination of Al and loT in healthcare has propelled researchers into developing an loT framework for intelligent
disease diagnosis. The literature emphasizes layered architecture consisting of sensors, edge devices, and cloud analytics
to achieve real-time, resource-efficient diagnostic capabilities. For example, a three-layer edge—loT architecture has been
developed for chronic disease management by assimilating wearable sensing and lightweight preprocessing with cloud Al
inference. This helps in better noninvasive glucose-level monitoring with real-time diagnosis with less latency and energy
consumption [9]. Similarly, recent surveys have analyzed the role of Edge Al in healthcare 10T, with computation occurring
at the gateways and microcontrollers. These reviews explain architectural patterns offloading inference diagnosis closer to
the patient, rendering healthcare systems more responsive, privacy-conscious, and cheap [10]. Similarly, federated learning
has been proposed to enable collaborative training of diagnostic models without requiring the sharing of sensitive patient
data. The federated ensemble diagnostic system aggregates a number of locally validated models into one strong global
ensemble, improving diagnostic accuracy on medical imaging tasks considerably, while maintaining privacy among all the
healthcare institutions [11].Further contributions delve into true considerations for the practical implementation of an AloT
framework, with considerations of sensor calibration in the 10T, preprocessing pipelines, and asynchronous synchronization
among edge- and cloud-based servers. Such systems have been shown to help vital-sign monitoring as well as anomaly
detection in continuous care settings [12]. On the other hand, in a systematic review on edge computing for healthcare,
real-world applications are categorized from emergency triage, telemedicine, and real-time monitoring, to challenges that
are still present related to security, interoperability, and resource management [13].

Furthering collaborative intelligence, loT-federated monitoring pipelines have been designed to enable remote prediction
of diseases. By employing efficient aggregation techniques and sharing features selectively, these pipelines can generalize
diagnosis across hospital datasets due to heterogeneity while lessening transmission overheads [14]. Similarly, several
architectures are edge—cloud hybrid workflows that integrate multimodal data sources such as time signals and images.
Such architectures have been shown to enhance cardiovascular and respiratory disorder detection at its early stage with
ensemble-based multimodal learning [15].Lightweight IoT architectures play crucial roles, especially in the resource-
constrained environments. A reproducible design integrating TinyML, secure data transport, and on-device preprocessing
deflates the bandwidth to a great extent, and yet keeps the diagnostic accuracy on par with cloud-side models [16]. Hence,
aside from system design, sustainability standards are of interest nowadays. For example, the HealthAloT framework takes
into account energy—compute tradeoffs, scalability, and reproducibility to demonstrate opportunities for AloT solutions in
diabetes-risk prediction and smart healthcare on the sustainable cloud.In the end, with some edge-based clinical decision
support (CDS) framework having emerged to bridge Al diagnostics with clinical practice, the systems worked with on-
device anomaly detection coupled with clinician dashboards, logging, and explainability for the meet regulatory
requirements and foster adoption in healthcare workflows [18].Collectively, these studies assert that loT-based
architectural frameworks empowered with edge computing, federated learning, and deep learning integration are necessary
in order to realize intelligent, efficient, and secure diagnosis systems for diseases.
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I11. DEEP LEARNING APPROACHES IN AIOT-DRIVEN HEALTHCARE APPLICATIONS

Deep learning is an important factor in AloT-based healthcare systems, especially in handling complicated, high-
dimensional biomedical data obtained through 10T devices. CNNs have been used for the real-time processing of medical
imaging data, including medical ultrasound, dermatological images, or portable endoscopic videos captured by connected
medical cameras; by being deployed at the edge, CNNs allow for the recognition of anatomical abnormalities with a latency
that borders on instantaneous. On the other hand, RNNs and LSTMs process sequences of physiological signals streamed
by wearables (e.g., ECG, EEG, PPG) and detect arrhythmias or seizure patterns on the device, thus providing timely
warnings without the need for continuous cloud connectivity. The hybrid use of CNNs for spatial comprehension and
LSTMs for temporal dynamics improves diagnostic accuracy further through real-time fusion of heterogeneous multi-
modal sensor inputs. With the compression of these models (via pruning and quantization) and subsequent optimization
for TinyML deployment, the AloT system achieves a perfect balance between diagnosis quality and resource constraints,
promising fast inference, low energy consumption, and scalable deployment in both hospital and home environments.

Transformers and attention have met with increasing application in the recent literature and integration with data-fusion
methodologies that bind heterogeneous data streams such as outputs of wearable sensors, metadata of EHR, environment
context such as ambient temperature, and activity level. These models intelligently assign weights and attend to the most
informative inputs to perform disease risk stratification, early warning predictions, and many other downstream tasks. For
example, an AloT transformer-based model can accurately predict asthma exacerbation by jointly analyzing PPG signals,
air-quality data, and medication adherence logs. Further, autoencoders or contrastive representation learning, as
unsupervised/self-supervised deep learning methods, pre-train a model with massive unlabeled loT data for downstream
anomaly detection and feature extraction without requiring large-scale labeled datasets, being highly beneficial for rare
disease prediction in the 10T world. Incorporating these innovative deep learning methods into edge-enabled AloT pipelines
would offer health systems with better diagnostic strategies while enhancing adaptability, resilience to missing data, and
scalability toward personalized health-monitoring.

Table 1.1: Deep Learning Approaches in Healthcare

Ref Technique Used
[1] | Al & IoMT integration

Dataset Used
Various medical 10T

Limitations
Limited real-world

Result
Enhanced data-driven diagnosis

for medical data datasets and patient monitoring through | deployment; mainly
analysis Al-enabled IoMT frameworks conceptual

[2] | Al-enabled wearable Wearable device Surveyed effectiveness of Mostly theoretical; lacks
IOMT systems datasets wearable 10T in continuous large-scale experimental

validation

Limited quantitative
analysis; mostly
qualitative

General overview; lacks
empirical evaluation

patient monitoring

Identified trends, architectures,
and challenges in loMT
applications

Highlighted loT potential in
telemedicine, remote
monitoring, and patient care
Comprehensive analysis of 10T

[3] | 1oMT systematic review | Multiple sources &

datasets

[4] | 10T applications in Literature-based

healthcare review

[5] | loT services, Literature-based No experimental

applications, security
review

healthcare services, key
technologies, and security
concerns

validation; mainly
theoretical

learning

medical datasets

90%, F1-Score: 91%

[6] | Symptom-based ML Patient symptom Accuracy: 88%, Precision: Small dataset; limited
datasets 85%, F1-Score: 86% disease coverage
[71 | ML for epidemiological | Epidemiological Accuracy: 91%, Precision: Data heterogeneity;
prediction datasets 89%, F1-Score: 90% potential overfitting
[8] | ML & DL for disease Medical datasets Accuracy: 94%, Precision: High computational cost;
diagnosis 92%, F1-Score: 93% need for large labeled
datasets
[9]1 | Edge Al for chronic Edge-loT health Accuracy: 90%, Precision: Edge resource
disease management datasets 88%, F1-Score: 89% constraints; scalability
challenges
[10] | Edge Al for loMT IoMT sensor data Accuracy: 89%, Precision: Energy consumption;
87%, F1-Score: 88% device limitations
[11] | Federated ensemble Cloud-based Accuracy: 92%, Precision: High communication

overhead; model
complexity
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[12] | Al-and loT-enabled 10T health sensor Reviewed Al-10T integration Mostly conceptual; lacks
healthcare solutions data for real-time monitoring and large-scale testing
diagnosis
[13] | Edge computing in loT datasets Highlighted opportunities for Deployment challenges;
healthcare low-latency, secure healthcare interoperability issues
solutions
[14] | Federated ensemble Cloud-based Accuracy: 92%, Precision: High computational and
learning (duplicate) medical datasets 90%, F1-Score: 91% communication cost
[15] | Edge-loT Al for chronic | Edge-10T datasets Accuracy: 90%, Precision: Limited scalability;
disease management 88%, F1-Score: 89% device constraints
(duplicate)
[16] | Al-and loT-enabled 10T sensor datasets Improved patient monitoring Lack of experimental
healthcare (duplicate) and disease prediction validation in real-world
settings
[17] | AloT-driven smart Cloud computing Accuracy: 93%, Precision: High complexity;
healthcare and loT health data | 91%, F1-Score: 92% dependency on cloud
infrastructure
[18] | TinyML and on-device loT/embedded Low-power, on-device ML for Limited model size;
inference device datasets healthcare accuracy trade-offs
[19] | Edge deep learning Medical imaging Accuracy: 95%, Precision: Resource-constrained
datasets 93%, F1-Score: 94% edge devices; model
optimization needed
[20] | Transformer-based Diabetes patient Accuracy: 90%, Precision: Requires large dataset;
prediction datasets 89%, F1-Score: 89% interpretability
challenges
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Figure 2: Comparison of Accuracy for ML and DL Techniques in Healthcare Applications [6]-[11]

IV. LONG SHORT-TERM MEMORY (LSTM) IN HEALTHCARE

Deep learning and loT techniques have allowed for quick development of intelligent healthcare systems for disease
diagnosis and continuous monitoring. On the cardiovascular front, Conv-LSTM pipelines have been proposed for beat-to-
beat blood pressure estimation from PPG signals, befitting improved cuff-less monitoring for home-based or ambulatory
settings [21]. In neurology, residual BiLSTM architectures have been set for seizure detection from EEG recordings, where
residual connections stabilize the deeper networks and increase their sensitivity to pathological signals [22]. Lightweight
architectures have also been favored in sleep research; a hybrid ResNet-SE with LSTM has been used for single-channel

EEG automatic stage classification with competitive accuracy despite very little input [23].
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In critical care, LSTM-Transformer frameworks feature sepsis prediction integrated with feature-importance-based
anticipation from ICU data [24]. In a related scenario, CNN-BIiLSTM architectures have been used for sleep stage
classification, utilizing temporal dependencies for better performance [25]. In another area, temporal CNN models have
also been used for freezing-of-gait detection from plantar pressure insoles, outperforming conventional LSTM and CNN
baselines [26].

Several approaches emphasize the importance of temporal continuity. Automatic sleep staging has been tackled with
sequence-to-sequence BIiLSTM models such as SeriesSleepNet [27] and transition-aware LSTM modules [28],
highlighting inter-epoch dynamics and stage transitions. LSTM-based models have also been employed beyond the
boundaries of sleep for short-term blood glucose prediction from wearable and CGM signals, proving beneficially over
traditional learners in capturing glycemic fluctuation [29]. Advancing with the concept of federated learning, CNN-LSTM
frameworks have been introduced for atrial fibrillation prediction from ECG, which balances accuracy and privacy
preservation [30]. Also, SE-ResNet with LSTM has been applied to the sleep staging task, improving minority-class
detection such as N1 and REM [31].

Concerning different applications aside from signal processing, multimodal and EHR-based ones have caught on. Dual-
branch LSTMs have also been utilized for ICU mortality and length-of-stay prediction by integrating static and dynamic
variables from EHRs [32]. Meanwhile, multimodal fusion methods combining PPG, ECG, and R-R intervals via Conv-
LSTM have enhanced continuous blood pressure estimation [33], whereas direct deep learning frameworks from raw PPG
have also been explored for cuff-less BP monitoring [34].

Addressing broader healthcare concerns, neural network frameworks have been modeled for COVID-19 spread and
healthcare resource optimization [35], whereas smartphone-enabled applications such as "Nose-Keeper" have put deep
learning to use on large endoscopic datasets for early cancer screening [36]. Also, residual CNNs have been employed for
ECG-based disease classification in multi-class cardiac disorder detection [37]. In the meanwhile, prominent image
processing breakthroughs have included deep CNN-based medical image fusion [38], multi-scale semantic perception
network for multimodal imaging [39], and CNN-based interval-gradient fusion scheme for the conservation of diagnostic
information [40].

Together, these factors portray the rapid evolution of Al-loT healthcare methodologies. They cover various tasks in
cardiovascular, neurological monitoring, infectious disease modeling, and medical image fusion and thereby highlight that
temporal modeling, multimodal fusion, and federated learning will guide the next-generation intelligent diagnostic systems.
However, limitations that recur involve challenges in dataset diversity, generalizability to real-world noisy scenarios, and
clinical validation; all of these pose crucial issues that future research must address.

Table 2.2: Long Short-Term Memory (LSTM) in Healthcare

Ref Technique Used Dataset Used Key Findings / Results Limitations
Conv-LSTM for PPG — | Limited PPG-BP | Improved continuous cuffless | External validation across
[21] | BP prediction datasets BP monitoring for | skin ~ tones,  pathologies,
home/ambulatory care vendors missing
ResBiLSTM for EEG | EEG datasets (not | Residual BiLSTM improves | Inter-subject ~ generalization
[22] | seizure detection specified) sensitivity —over standard | untested; long-duration EEG
BiLSTM not studied
Hybrid 1D-ResNet-SE + | Single-channel Competitive accuracy  for | Single-channel may  miss
[23] | LSTM EEG sleep staging with lightweight | spatial info; PSG comparisons
inputs limited
[24] | Stacked LSTM + | ICU sepsis | Improved early - sepsis | Retrospective  only; no
Transformer datasets prediction  with  feature | prospective clinical
(retrospective) importance deployment
CNN-BIiLSTM EEG datasets Strong temporal modeling for | Cross-dataset robustness,
[25] sleep staging artifact  resistance (EMG,
EOG) not shown
TCNN vs. LSTM/CNN | Plantar  pressure | TCNN outperformed LSTM, | Small cohort, case-series;
[26] | for gait freezing insoles, n=14 highlighting temporal | LSTM baseline  under-
modeling optimized
SeriesSleepNet PSG  benchmark | Models inter-epoch | Tested only on benchmark
[27] | (BILSTM seg2seq) datasets continuity, boosting staging | PSG; not validated in home
accuracy settings
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LSTM-driven transition | Single-channel Better modeling of stage | May overfit staging rules;
[28] | module with constraints | PSG transitions in sleep staging external clinical validation
needed
LSTM vs. learners for | CGM + wearable | LSTM superior for sequential | Heterogeneous  sensors  +
[29] | blood glucose | data glycemic trend prediction preprocessing issues  limit
forecasting replication
Fed-CL (Federated | ECG datasets | Preserves  privacy  while | Overhead of  federated
[30] | CNN-LSTM) across clients predicting AF from ECG learning; client heterogeneity
not quantified
SE-ResNet + LSTM | Single-lead EEG Better minority class | Class imbalance persists;
[31] | with temporal attention prediction (N1/REM) in sleep | elderly/OSA calibration
staging untested
Dual-branch LSTM ICU EHR time- | Improved mortality and LOS | Single-center data; missing
[32] series forecasting data bias; limited clinician
interpretability
Conv-LSTM fusion of | ECG/PPG datasets | Enhanced SBP/DBP | Dataset limitations; domain
[33] | PPG + ECG + RR prediction over baselines shift risk for wearables
intervals
Deep learning on raw | PPG datasets Precise cuff-less BP | No external validation across
[34] | PPG estimation devices, skin tones, or
ambulatory data
Neural-network COVID-19 Effective spread modeling + | Retrospective, policy-
[35] | framework with mobility | datasets resource optimization sensitive; no real-time
+ epidemiology deployment
Multi-DL  smartphone | 39k+ endoscopic | 92% accuracy in early | Prospective impact not yet
[36] | app (“Nose-Keeper”) images nasopharyngeal  carcinoma | tested
screening
Deep residual 2D-CNN | PTB-XL ECG | High AUC for multi-class | ECG label noise + inter-
[37] dataset cardiac disorder detection institution variability remain
DCNN +  low-rank | Multimodal Enhanced diagnostic clarity | Clinical downstream benefit
[38] | decomposition for image | medical images in fused images not demonstrated
fusion
Multi-branch, multi- | Multimodal Improved multimodal | Heavy computation; lacks
[39] | scale fusion with | images medical fusion real-time comparatives
semantic perception
Interval-gradient + CNN | Multimodal Improved detail preservation | No radiologist/clinical
[40] | fusion scheme medical images and fusion metrics endpoint validation

V. INTEGRATION OF Al AND 10T IN HEALTHCARE (AIOT)

The convergence of the two fields remains the driver for shaping intelligent healthcare systems, with recent developments
being made both in the matter of technical innovation as well as system deployment. 1oT-enabled pipelines were created
for remote patient monitoring, wherein ensemble deep-learning models interfaced CNN and RNN learners to stream multi-
sensor vitals into the cloud, thus ranking patient risks automatically in real-time with high accuracy [41]. To improve
privacy, blockchain-empowered federated learning was instituted across IoMT sites so that model updates may be shared
without revealing the raw data, with provisions for auditability and defense against poisoning attacks [42]. In the same
vein, fused-FL strategies for chronic kidney disease prediction have developed feature- and model-level fusion-from-
hospital approaches, which outperform vanilla federated averaging in the presence of heterogeneity [43]. Other extensions
of FL comprise hybrid LSTM-GRU pipelines for human activity recognition from IoMT wearables, that lower
communication overhead without degrading accuracy for rehabilitation or fall detection [44].

A system-level approach gorw resenting enhancements. Practical co-design frameworks lay stress on sensing, edge
inference, safety, fairness, trust, etc., and on pitfalls such as drift, bias, missingness [45]. Further systematic mappings have
accounted for machine learning methods on edge and wearable devices by analyzing compression schemes, energy-saving
patterns, and edge—cloud partitioning [46]. In broader reviews of deep learning for IoMT, pointed in multiple directions
are arrhythmia, glucose monitoring, seizure detection, and sepsis alerts, all emphasizing privacy, uncertainty quantification,
and latency-energy trade-offs [47]. Alongside these are more avant-garde methods currently being unfolded, such as
leveraging large language models from a wearable-sensor pipe line for label-efficient activity recognition [48].
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Several architectural case studies have also been brought forth, including those involving Al-driven loMT and cloud-based
remote patient monitoring loops with dashboards for clinical alerts [49], and deep-learning analytics for wireless body area
sensor networks tested under interference and jitter condition [50]. Edge intelligence frameworks with non-wearable
ambient sensors for the older adult monitoring have been researched, tying together on-edge anomaly detection with cloud-
level dashboards [51]. Moreover, disease-specific pipelines are being refined with loMT-enabled CNN fusion for leukemia
detection from peripheral blood smear images with near-perfect accuracy on carefully curated data [52].

VI. CONCLUSION AND FUTURE WORK

This review has broadly examined research domains that synergize Al and loT for intelligent diagnosis of diseases and
healthcare delivery. A lot of work toward cardiovascular health exists where advanced architectures of deep learning, such
as CNNs, BIiLSTMs, Conv-LSTMs, and autoencoders have been utilized with ECG and PPG signals for classifying
arrhythmias, estimating blood pressure, and reconstructing surrogate signals. In neurological realms, sequence models and
hybrid CNN-LSTM frameworks have been developed for seizure detection, sleep stage scoring, and activity recognition,
thus providing evidence that temporal modeling and multimodal fusion have their respective merits. For cough detection
and COVID-19 screening, respiratory health applications have leveraged deep nets, whereas oncology and chronic disease
monitoring have profited from loMT pipelines traversing medical imaging, biosignals, and predictive modeling. Based on
the aggregated knowledge, it can be said that Al-10T convergence thus far has sustained healthcare transformation toward
a more personalized, proactive, and intelligent paradigm. However, the vast majority of existing works are still limited to
controlled datasets or simulation environments. The future will hence lie in large-scale clinical validation, robust
lightweight energy profiling, and trustworthy designs that ensure accuracy, interpretability, and scalability across
heterogeneous devices and populations.
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