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Abstract:  

Real-time disease diagnosis, remote monitoring, and personalized medical services are the outcomes of the rapid 

convergence of AI and IoT, thus revolutionizing smart healthcare. IoT devices, which include wearables, biomedical 

sensors, and smart implants, generate huge streams of heterogenous health data that, when analyzed and processed 

intelligently with AI techniques, facilitate the detection of anomalies and prediction of disease occurrences. This 

integration, thus, created an ecosystem that supports preventive healthcare, early intervention, and speedy clinical 

decision-making, apart from improving diagnostic accuracy. From the machine-learning, deep-learning, and data-fusion 

perspective, recent times have seen strides in the opportunities available for the high-precision processing of 

physiologically complex data, i.e., ECGs, medical imagery, and metabolic signals. Further, cloud computing, edge 

intelligence, and secured data-sharing mechanisms build up the infrastructure for scalable and reliable means of remote 

healthcare delivery. Yet, despite all these, data privacy, interoperability, real-time response, and energy consumption by 

IoT devices for automated diagnosis continue to remain rough. This review follows a systematic analysis of the present 

state of AI-IoT integration for intelligent disease diagnosis while sketching out existing techniques, architectures, and 

applications in several fields such as cardiovascular disease, neurological disorders, respiratory diseases, and chronic 

ailments. Moreover, it points at serious restrictions and open research directions such as federated learning, blockchain-

enabled healthcare security, and resource-efficient AI models for low-power IoT systems. Rectifying these limitations could 

turn both sectors into fruitful collaboration. AI-IoT synergy would hold the capability to gradually heal the transition of 

conventional healthcare into a truly proactive, personalized, and intelligent system.  

Keywords: Artificial Intelligence, Internet of Things, Smart Healthcare, Disease Diagnosis, Machine Learning, Remote 

Patient Monitoring    

 

I. INTRODUCTION 

Rapid transformation of healthcare delivery is occurring due to the convergence of Artificial Intelligence and the Internet 

of Things, including continuous, real-time monitoring, automated clinical decision support, and data-based diagnosis of 

disease. Generating massive volumes of multimodal biomedical data, the Internet of Medical Things (IoMT) comprising 

networks of wearable, implantable and ambient sensors send this data to different AI algorithms, ranging from classical 

machine learning methods to deep learning and transformer-based models, which convert it into clinically actionable 

insights for he early detection, prognosis, and planning of personalized therapy [1]-[3].  Recently, various facets of the 

fog/edge are considered for low-latency objectives such as ICU monitoring or emergency triage. Then, another concern is 

federated or privacy-preserving learning so that there may exist a deterrence of regulatory and data-sovereignty factors in 

training across distributed clinical sites [3]-[6]. For application, AI-enabled IoT systems were said to have done well in 

imaging, particularly in radiology, dermatology, and histopathology; analysis of physiological signals like ECG, EEG, and 

PPG concentrations; analysis of longitudinal electronic health records for disease risk prediction and remote monitoring. 

Many recent studies report a very high experimental setting-level diagnostic accuracy; however, generalizability, dataset 

bias, label scarcity, and explainability of models present major barriers to clinical translation [5]- [6]. To work on these 

issues, the literature recommends strict external validation, multimodal fusion, methods for explainable AI, robust domain-

adaptation techniques, and standardized interoperability protocols for device and data integration [7].  

Deployment challenges remain despite demonstrated promise: security and patient privacy risks in the IoMT ecosystem; 

heterogeneity in sensor and communication standards; and scarce energy and resource availability at the edge. And 

regulatory approvals, as well as clinician-centric explainability to engender trust, are necessary. Recent systematic reviews 

and domain papers demand multidisciplinary research merging algorithmic advances with secure system design, clinical 

evaluation pipelines, and straightforward regulatory paths so that AI–IoT solutions can safely and equitably be integrated 

into healthcare settings [8]. Figure 1 shows a smart healthcare system which integrates emerging technologies such as 

Artificial Intelligence (AI), Internet of Things (IoT), robotics, and big data to foster better patient care and clinical 

efficiencies. Telemedicine, remote monitoring, or IoT devices all enable a continuing health status check, while the EHR 

system and predictive analytics back up decisions with data. AI supports diagnostic and clinical decision-making to 
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improve accuracy and reduce errors, while robotics and automation facilitate surgical processes and operational activities 

in hospitals. Health apps promote patient participation in care, and strict data security practices guarantee privacy and trust. 

When bound together, the elements produce a connected ecosystem for patient-centered healthcare. 

 
Figure 1: Smart Healthcare System 

II. IoT-BASED ARCHITECTURAL FRAMEWORK FOR INTELLIGENT DISEASE DIAGNOSIS 

The combination of AI and IoT in healthcare has propelled researchers into developing an IoT framework for intelligent 

disease diagnosis. The literature emphasizes layered architecture consisting of sensors, edge devices, and cloud analytics 

to achieve real-time, resource-efficient diagnostic capabilities. For example, a three-layer edge–IoT architecture has been 

developed for chronic disease management by assimilating wearable sensing and lightweight preprocessing with cloud AI 

inference. This helps in better noninvasive glucose-level monitoring with real-time diagnosis with less latency and energy 

consumption [9]. Similarly, recent surveys have analyzed the role of Edge AI in healthcare IoT, with computation occurring 

at the gateways and microcontrollers. These reviews explain architectural patterns offloading inference diagnosis closer to 

the patient, rendering healthcare systems more responsive, privacy-conscious, and cheap [10]. Similarly, federated learning 

has been proposed to enable collaborative training of diagnostic models without requiring the sharing of sensitive patient 

data. The federated ensemble diagnostic system aggregates a number of locally validated models into one strong global 

ensemble, improving diagnostic accuracy on medical imaging tasks considerably, while maintaining privacy among all the 

healthcare institutions [11].Further contributions delve into true considerations for the practical implementation of an AIoT 

framework, with considerations of sensor calibration in the IoT, preprocessing pipelines, and asynchronous synchronization 

among edge- and cloud-based servers. Such systems have been shown to help vital-sign monitoring as well as anomaly 

detection in continuous care settings [12]. On the other hand, in a systematic review on edge computing for healthcare, 

real-world applications are categorized from emergency triage, telemedicine, and real-time monitoring, to challenges that 

are still present related to security, interoperability, and resource management [13]. 

 

Furthering collaborative intelligence, IoT-federated monitoring pipelines have been designed to enable remote prediction 

of diseases. By employing efficient aggregation techniques and sharing features selectively, these pipelines can generalize 

diagnosis across hospital datasets due to heterogeneity while lessening transmission overheads [14]. Similarly, several 

architectures are edge–cloud hybrid workflows that integrate multimodal data sources such as time signals and images. 

Such architectures have been shown to enhance cardiovascular and respiratory disorder detection at its early stage with 

ensemble-based multimodal learning [15].Lightweight IoT architectures play crucial roles, especially in the resource-

constrained environments. A reproducible design integrating TinyML, secure data transport, and on-device preprocessing 

deflates the bandwidth to a great extent, and yet keeps the diagnostic accuracy on par with cloud-side models [16]. Hence, 

aside from system design, sustainability standards are of interest nowadays. For example, the HealthAIoT framework takes 

into account energy–compute tradeoffs, scalability, and reproducibility to demonstrate opportunities for AIoT solutions in 

diabetes-risk prediction and smart healthcare on the sustainable cloud.In the end, with some edge-based clinical decision 

support (CDS) framework having emerged to bridge AI diagnostics with clinical practice, the systems worked with on-

device anomaly detection coupled with clinician dashboards, logging, and explainability for the meet regulatory 

requirements and foster adoption in healthcare workflows [18].Collectively, these studies assert that IoT-based 

architectural frameworks empowered with edge computing, federated learning, and deep learning integration are necessary 

in order to realize intelligent, efficient, and secure diagnosis systems for diseases. 
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III. DEEP LEARNING APPROACHES IN AIOT-DRIVEN HEALTHCARE APPLICATIONS 

 

Deep learning is an important factor in AIoT-based healthcare systems, especially in handling complicated, high-

dimensional biomedical data obtained through IoT devices. CNNs have been used for the real-time processing of medical 

imaging data, including medical ultrasound, dermatological images, or portable endoscopic videos captured by connected 

medical cameras; by being deployed at the edge, CNNs allow for the recognition of anatomical abnormalities with a latency 

that borders on instantaneous. On the other hand, RNNs and LSTMs process sequences of physiological signals streamed 

by wearables (e.g., ECG, EEG, PPG) and detect arrhythmias or seizure patterns on the device, thus providing timely 

warnings without the need for continuous cloud connectivity. The hybrid use of CNNs for spatial comprehension and 

LSTMs for temporal dynamics improves diagnostic accuracy further through real-time fusion of heterogeneous multi-

modal sensor inputs. With the compression of these models (via pruning and quantization) and subsequent optimization 

for TinyML deployment, the AIoT system achieves a perfect balance between diagnosis quality and resource constraints, 

promising fast inference, low energy consumption, and scalable deployment in both hospital and home environments. 

 

Transformers and attention have met with increasing application in the recent literature and integration with data-fusion 

methodologies that bind heterogeneous data streams such as outputs of wearable sensors, metadata of EHR, environment 

context such as ambient temperature, and activity level. These models intelligently assign weights and attend to the most 

informative inputs to perform disease risk stratification, early warning predictions, and many other downstream tasks. For 

example, an AIoT transformer-based model can accurately predict asthma exacerbation by jointly analyzing PPG signals, 

air-quality data, and medication adherence logs. Further, autoencoders or contrastive representation learning, as 

unsupervised/self-supervised deep learning methods, pre-train a model with massive unlabeled IoT data for downstream 

anomaly detection and feature extraction without requiring large-scale labeled datasets, being highly beneficial for rare 

disease prediction in the IoT world. Incorporating these innovative deep learning methods into edge-enabled AIoT pipelines 

would offer health systems with better diagnostic strategies while enhancing adaptability, resilience to missing data, and 

scalability toward personalized health-monitoring. 

 

Table 1.1: Deep Learning Approaches in Healthcare  

 

Ref Technique Used Dataset Used Result Limitations 

[1] AI & IoMT integration 

for medical data 

analysis 

Various medical IoT 

datasets 

Enhanced data-driven diagnosis 

and patient monitoring through 

AI-enabled IoMT frameworks 

Limited real-world 

deployment; mainly 

conceptual 

[2] AI-enabled wearable 

IoMT systems 

Wearable device 

datasets 

Surveyed effectiveness of 

wearable IoT in continuous 

patient monitoring 

Mostly theoretical; lacks 

large-scale experimental 

validation 

[3] IoMT systematic review Multiple sources & 

datasets 

Identified trends, architectures, 

and challenges in IoMT 

applications 

Limited quantitative 

analysis; mostly 

qualitative 

[4] IoT applications in 

healthcare review 

Literature-based Highlighted IoT potential in 

telemedicine, remote 

monitoring, and patient care 

General overview; lacks 

empirical evaluation 

[5] IoT services, 

applications, security 

review 

Literature-based Comprehensive analysis of IoT 

healthcare services, key 

technologies, and security 

concerns 

No experimental 

validation; mainly 

theoretical 

[6] Symptom-based ML Patient symptom 

datasets 

Accuracy: 88%, Precision: 

85%, F1-Score: 86% 

Small dataset; limited 

disease coverage 

[7] ML for epidemiological 

prediction 

Epidemiological 

datasets 

Accuracy: 91%, Precision: 

89%, F1-Score: 90% 

Data heterogeneity; 

potential overfitting 

[8] ML & DL for disease 

diagnosis 

Medical datasets Accuracy: 94%, Precision: 

92%, F1-Score: 93% 

High computational cost; 

need for large labeled 

datasets 

[9] Edge AI for chronic 

disease management 

Edge-IoT health 

datasets 

Accuracy: 90%, Precision: 

88%, F1-Score: 89% 

Edge resource 

constraints; scalability 

challenges 

[10] Edge AI for IoMT IoMT sensor data Accuracy: 89%, Precision: 

87%, F1-Score: 88% 

Energy consumption; 

device limitations 

[11] Federated ensemble 

learning 

Cloud-based 

medical datasets 

Accuracy: 92%, Precision: 

90%, F1-Score: 91% 

High communication 

overhead; model 

complexity 
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[12] AI- and IoT-enabled 

healthcare solutions 

IoT health sensor 

data 

Reviewed AI-IoT integration 

for real-time monitoring and 

diagnosis 

Mostly conceptual; lacks 

large-scale testing 

[13] Edge computing in 

healthcare 

IoT datasets Highlighted opportunities for 

low-latency, secure healthcare 

solutions 

Deployment challenges; 

interoperability issues 

[14] Federated ensemble 

learning (duplicate) 

Cloud-based 

medical datasets 

Accuracy: 92%, Precision: 

90%, F1-Score: 91% 

High computational and 

communication cost 

[15] Edge-IoT AI for chronic 

disease management 

(duplicate) 

Edge-IoT datasets Accuracy: 90%, Precision: 

88%, F1-Score: 89% 

Limited scalability; 

device constraints 

[16] AI- and IoT-enabled 

healthcare (duplicate) 

IoT sensor datasets Improved patient monitoring 

and disease prediction 

Lack of experimental 

validation in real-world 

settings 

[17] AIoT-driven smart 

healthcare 

Cloud computing 

and IoT health data 

Accuracy: 93%, Precision: 

91%, F1-Score: 92% 

High complexity; 

dependency on cloud 

infrastructure 

[18] TinyML and on-device 

inference 

IoT/embedded 

device datasets 

Low-power, on-device ML for 

healthcare 

Limited model size; 

accuracy trade-offs 

[19] Edge deep learning Medical imaging 

datasets 

Accuracy: 95%, Precision: 

93%, F1-Score: 94% 

Resource-constrained 

edge devices; model 

optimization needed 

[20] Transformer-based 

prediction 

Diabetes patient 

datasets 

Accuracy: 90%, Precision: 

89%, F1-Score: 89% 

Requires large dataset; 

interpretability 

challenges 

 

 
Figure 2: Comparison of Accuracy for ML and DL Techniques in Healthcare Applications [6]-[11] 

 

IV. LONG SHORT-TERM MEMORY (LSTM) IN HEALTHCARE 

Deep learning and IoT techniques have allowed for quick development of intelligent healthcare systems for disease 

diagnosis and continuous monitoring. On the cardiovascular front, Conv-LSTM pipelines have been proposed for beat-to-

beat blood pressure estimation from PPG signals, befitting improved cuff-less monitoring for home-based or ambulatory 

settings [21]. In neurology, residual BiLSTM architectures have been set for seizure detection from EEG recordings, where 

residual connections stabilize the deeper networks and increase their sensitivity to pathological signals [22]. Lightweight 

architectures have also been favored in sleep research; a hybrid ResNet-SE with LSTM has been used for single-channel 

EEG automatic stage classification with competitive accuracy despite very little input [23]. 
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In critical care, LSTM-Transformer frameworks feature sepsis prediction integrated with feature-importance-based 

anticipation from ICU data [24]. In a related scenario, CNN-BiLSTM architectures have been used for sleep stage 

classification, utilizing temporal dependencies for better performance [25]. In another area, temporal CNN models have 

also been used for freezing-of-gait detection from plantar pressure insoles, outperforming conventional LSTM and CNN 

baselines [26]. 

 

Several approaches emphasize the importance of temporal continuity. Automatic sleep staging has been tackled with 

sequence-to-sequence BiLSTM models such as SeriesSleepNet [27] and transition-aware LSTM modules [28], 

highlighting inter-epoch dynamics and stage transitions. LSTM-based models have also been employed beyond the 

boundaries of sleep for short-term blood glucose prediction from wearable and CGM signals, proving beneficially over 

traditional learners in capturing glycemic fluctuation [29]. Advancing with the concept of federated learning, CNN-LSTM 

frameworks have been introduced for atrial fibrillation prediction from ECG, which balances accuracy and privacy 

preservation [30]. Also, SE-ResNet with LSTM has been applied to the sleep staging task, improving minority-class 

detection such as N1 and REM [31]. 

 

Concerning different applications aside from signal processing, multimodal and EHR-based ones have caught on. Dual-

branch LSTMs have also been utilized for ICU mortality and length-of-stay prediction by integrating static and dynamic 

variables from EHRs [32]. Meanwhile, multimodal fusion methods combining PPG, ECG, and R-R intervals via Conv-

LSTM have enhanced continuous blood pressure estimation [33], whereas direct deep learning frameworks from raw PPG 

have also been explored for cuff-less BP monitoring [34]. 

 

Addressing broader healthcare concerns, neural network frameworks have been modeled for COVID-19 spread and 

healthcare resource optimization [35], whereas smartphone-enabled applications such as "Nose-Keeper" have put deep 

learning to use on large endoscopic datasets for early cancer screening [36]. Also, residual CNNs have been employed for 

ECG-based disease classification in multi-class cardiac disorder detection [37]. In the meanwhile, prominent image 

processing breakthroughs have included deep CNN-based medical image fusion [38], multi-scale semantic perception 

network for multimodal imaging [39], and CNN-based interval-gradient fusion scheme for the conservation of diagnostic 

information [40]. 

 

Together, these factors portray the rapid evolution of AI-IoT healthcare methodologies. They cover various tasks in 

cardiovascular, neurological monitoring, infectious disease modeling, and medical image fusion and thereby highlight that 

temporal modeling, multimodal fusion, and federated learning will guide the next-generation intelligent diagnostic systems. 

However, limitations that recur involve challenges in dataset diversity, generalizability to real-world noisy scenarios, and 

clinical validation; all of these pose crucial issues that future research must address. 

 

Table 2.2: Long Short-Term Memory (LSTM) in Healthcare 
 

Ref Technique Used Dataset Used Key Findings / Results Limitations 

 

[21]  

Conv-LSTM for PPG → 

BP prediction 

Limited PPG-BP 

datasets 

Improved continuous cuffless 

BP monitoring for 

home/ambulatory care 

External validation across 

skin tones, pathologies, 

vendors missing 

 

[22]  

ResBiLSTM for EEG 

seizure detection 

EEG datasets (not 

specified) 

Residual BiLSTM improves 

sensitivity over standard 

BiLSTM 

Inter-subject generalization 

untested; long-duration EEG 

not studied 

 

[23]  

Hybrid 1D-ResNet-SE + 

LSTM 

Single-channel 

EEG 

Competitive accuracy for 

sleep staging with lightweight 

inputs 

Single-channel may miss 

spatial info; PSG comparisons 

limited 

[24]  Stacked LSTM + 

Transformer 

ICU sepsis 

datasets 

(retrospective) 

Improved early sepsis 

prediction with feature 

importance 

Retrospective only; no 

prospective clinical 

deployment 

 

[25]  

CNN-BiLSTM EEG datasets Strong temporal modeling for 

sleep staging 

Cross-dataset robustness, 

artifact resistance (EMG, 

EOG) not shown 

 

[26]  

TCNN vs. LSTM/CNN 

for gait freezing 

Plantar pressure 

insoles, n=14 

TCNN outperformed LSTM, 

highlighting temporal 

modeling 

Small cohort, case-series; 

LSTM baseline under-

optimized 

 

[27]  

SeriesSleepNet 

(BiLSTM seq2seq) 

PSG benchmark 

datasets 

Models inter-epoch 

continuity, boosting staging 

accuracy 

Tested only on benchmark 

PSG; not validated in home 

settings 
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[28]  

LSTM-driven transition 

module with constraints 

Single-channel 

PSG 

Better modeling of stage 

transitions in sleep staging 

May overfit staging rules; 

external clinical validation 

needed 

 

[29]  

LSTM vs. learners for 

blood glucose 

forecasting 

CGM + wearable 

data 

LSTM superior for sequential 

glycemic trend prediction 

Heterogeneous sensors + 

preprocessing issues limit 

replication 

 

[30]  

Fed-CL (Federated 

CNN-LSTM) 

ECG datasets 

across clients 

Preserves privacy while 

predicting AF from ECG 

Overhead of federated 

learning; client heterogeneity 

not quantified 

 

[31]  

SE-ResNet + LSTM 

with temporal attention 

Single-lead EEG Better minority class 

prediction (N1/REM) in sleep 

staging 

Class imbalance persists; 

elderly/OSA calibration 

untested 

 

[32]  

Dual-branch LSTM ICU EHR time-

series 

Improved mortality and LOS 

forecasting 

Single-center data; missing 

data bias; limited clinician 

interpretability 

 

[33]  

Conv-LSTM fusion of 

PPG + ECG + RR 

intervals 

ECG/PPG datasets Enhanced SBP/DBP 

prediction over baselines 

Dataset limitations; domain 

shift risk for wearables 

 

[34]  

Deep learning on raw 

PPG 

PPG datasets Precise cuff-less BP 

estimation 

No external validation across 

devices, skin tones, or 

ambulatory data 

 

[35]  

Neural-network 

framework with mobility 

+ epidemiology 

COVID-19 

datasets 

Effective spread modeling + 

resource optimization 

Retrospective, policy-

sensitive; no real-time 

deployment 

 

[36]  

Multi-DL smartphone 

app (“Nose-Keeper”) 

39k+ endoscopic 

images 

92% accuracy in early 

nasopharyngeal carcinoma 

screening 

Prospective impact not yet 

tested 

 

[37]  

Deep residual 2D-CNN PTB-XL ECG 

dataset 

High AUC for multi-class 

cardiac disorder detection 

ECG label noise + inter-

institution variability remain 

 

[38]  

DCNN + low-rank 

decomposition for image 

fusion 

Multimodal 

medical images 

Enhanced diagnostic clarity 

in fused images 

Clinical downstream benefit 

not demonstrated 

 

[39]  

Multi-branch, multi-

scale fusion with 

semantic perception 

Multimodal 

images 

Improved multimodal 

medical fusion 

Heavy computation; lacks 

real-time comparatives 

 

[40]  

Interval-gradient + CNN 

fusion scheme 

Multimodal 

medical images 

Improved detail preservation 

and fusion metrics 

No radiologist/clinical 

endpoint validation 

 

V. INTEGRATION OF AI AND IOT IN HEALTHCARE (AIOT) 

The convergence of the two fields remains the driver for shaping intelligent healthcare systems, with recent developments 

being made both in the matter of technical innovation as well as system deployment. IoT-enabled pipelines were created 

for remote patient monitoring, wherein ensemble deep-learning models interfaced CNN and RNN learners to stream multi-

sensor vitals into the cloud, thus ranking patient risks automatically in real-time with high accuracy [41]. To improve 

privacy, blockchain-empowered federated learning was instituted across IoMT sites so that model updates may be shared 

without revealing the raw data, with provisions for auditability and defense against poisoning attacks [42]. In the same 

vein, fused-FL strategies for chronic kidney disease prediction have developed feature- and model-level fusion-from-

hospital approaches, which outperform vanilla federated averaging in the presence of heterogeneity [43]. Other extensions 

of FL comprise hybrid LSTM–GRU pipelines for human activity recognition from IoMT wearables, that lower 

communication overhead without degrading accuracy for rehabilitation or fall detection [44]. 

 

A system-level approach gorw resenting enhancements. Practical co-design frameworks lay stress on sensing, edge 

inference, safety, fairness, trust, etc., and on pitfalls such as drift, bias, missingness [45]. Further systematic mappings have 

accounted for machine learning methods on edge and wearable devices by analyzing compression schemes, energy-saving 

patterns, and edge–cloud partitioning [46]. In broader reviews of deep learning for IoMT, pointed in multiple directions 

are arrhythmia, glucose monitoring, seizure detection, and sepsis alerts, all emphasizing privacy, uncertainty quantification, 

and latency-energy trade-offs [47]. Alongside these are more avant-garde methods currently being unfolded, such as 

leveraging large language models from a wearable-sensor pipe line for label-efficient activity recognition [48]. 
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Several architectural case studies have also been brought forth, including those involving AI-driven IoMT and cloud-based 

remote patient monitoring loops with dashboards for clinical alerts [49], and deep-learning analytics for wireless body area 

sensor networks tested under interference and jitter condition [50]. Edge intelligence frameworks with non-wearable 

ambient sensors for the older adult monitoring have been researched, tying together on-edge anomaly detection with cloud-

level dashboards [51]. Moreover, disease-specific pipelines are being refined with IoMT-enabled CNN fusion for leukemia 

detection from peripheral blood smear images with near-perfect accuracy on carefully curated data [52].  

 

VI. CONCLUSION AND FUTURE WORK   

 

This review has broadly examined research domains that synergize AI and IoT for intelligent diagnosis of diseases and 

healthcare delivery. A lot of work toward cardiovascular health exists where advanced architectures of deep learning, such 

as CNNs, BiLSTMs, Conv-LSTMs, and autoencoders have been utilized with ECG and PPG signals for classifying 

arrhythmias, estimating blood pressure, and reconstructing surrogate signals. In neurological realms, sequence models and 

hybrid CNN-LSTM frameworks have been developed for seizure detection, sleep stage scoring, and activity recognition, 

thus providing evidence that temporal modeling and multimodal fusion have their respective merits. For cough detection 

and COVID-19 screening, respiratory health applications have leveraged deep nets, whereas oncology and chronic disease 

monitoring have profited from IoMT pipelines traversing medical imaging, biosignals, and predictive modeling. Based on 

the aggregated knowledge, it can be said that AI–IoT convergence thus far has sustained healthcare transformation toward 

a more personalized, proactive, and intelligent paradigm. However, the vast majority of existing works are still limited to 

controlled datasets or simulation environments. The future will hence lie in large-scale clinical validation, robust 

lightweight energy profiling, and trustworthy designs that ensure accuracy, interpretability, and scalability across 

heterogeneous devices and populations. 
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